

AN EFFICIENT ALGORITHM TO RECOGNIZE LOCALLY EQUIVALENT GRAPHS

ANDRÉ BOUCHET*

Received February 16, 1989 Revised December 14, 1989

To locally complement a simple graph F at one of its vertices v is to replace the subgraph induced by F on $n(v) = \{w : vw \text{ is an edge of } F\}$ by the complementary subgraph. Graphs related by a sequence of local complementations are said to be locally equivalent. We associate a system of equations with unknowns in GF(2) to any pair of graphs $\{F,F'\}$, so that F is locally equivalent to F' if and only if the system has a solution. The equations are either linear and homogenous or bilinear, and we find a solution, if any, in polynomial time.

1. Local equivalence

Let F be a simple graph. The *neighborhood* of a vertex v of F is $n(v) = \{w : vw \text{ is an edge of } F\}$. To *locally complement* F at v is to replace the subgraph induced by F on n(v) by the complementary subgraph. We denote by F*v the local complement of F at v. Clearly

$$(F * v) * v = F.$$

For a word $v_1v_2 \dots v_q$ with letters in V we define

$$F * (v_1 v_2 \dots v_q) = (((F * v_1) * v_2) \dots) * v_q$$

and we say that $F' = F * (v_1 v_2 \dots v_q)$ is locally equivalent to F. This is actually an equivalence relation because the above equality implies $F = F' * (v_q \dots v_2 v_1)$. We notice that locally equivalent graphs are defined over the same vertex-set.

AMS subject classification (1991): 05C

^{*} With partial support of P. R. C. Mathématiques et Informatique.

2. Isotropic systems

This section recalls background properties proved in [3], except (2.5) proved in [4].

For any finite set V, we consider $\mathcal{P}(V)$, the power-set of V, with its canonical structure of vector-space over GF(2). Thus for $X, Y \subseteq V, X + Y$ is the symmetric difference of X and Y. The neighborhood function of a simple graph F over the vertex-set V is the linear function $n: \mathcal{P}(V) \to \mathcal{P}(V)$ such that $n(v) = \{w: vw \text{ is an edge of } F\}, v \in V$.

Let K denote a 2-dimensional vector space over GF(2), provided with the bilinear form given by $\langle x,y\rangle=1$ if and only if $0\neq x\neq y\neq 0$. For any finite set V we consider that the 2|V|-dimensional vector space K^V is provided with the bilinear form $\langle A,B\rangle=\sum (\langle A(v),B(v)\rangle:v\in V)$. An isotropic system is a pair S=(L,V) where V is a finite set and L is a totally isotropic subspace of K^V (i.e. $\langle A,B\rangle=0$ for every $A,B\in L$) such that $\dim(L)=|V|$.

A vector $A \in K^V$ is said to be *complete* if $A(v) \neq 0$ for every $v \in V$. For $P \subseteq V$ let $AP \in K^V$ be defined by AP(v) = A(v) if $v \in P$ and AP(v) = 0 in $v \notin P$. Let $\hat{A} = \{AP : P \subseteq V\}$ and notice that \hat{A} is a subspace of K^V . If A is complete and $\dim(L \cap \hat{A}) = 0$ then A is called an *Eulerian vector* of S. The reader may refer to [3] for a correspondence between 4-regular graphs and isotropic systems where Eulerian vectors correspond to Euler tours.

Two vectors $A, B \in K^V$ are supplementary if $0 \neq A(v) \neq B(v) \neq 0$ for every $v \in V$. Let (F, A, B) be a triple with a simple graph F and two supplementary vectors $A, B \in K^V$. Where n is the neighborhood function of F and

$$L = \{An(P) + BP : P \subseteq V\},\$$

it is easy to verify that S = (L, V) is an isotropic system (see [3] for details). We call (F, A, B) a graphic presentation of S and F a fundamental graph of S.

- (2.1) If (F, A, B) is a graphic presentation of an isotropic system S, then A is an Eulerian vector of S. Conversely if A is an Eulerian vector of S, then there exists a graphic presentation (F', A', B') such that A' = A, and this graphic presentation is unique.
- (2.2) Let A be an Eulerian vector of the isotropic system S = (L, V), and let $v \in V$. There exists precisely one Eulerian vector A' satisfying $A'(v) \neq A(v)$ and A'(w) = A(w) for every $w \in V \setminus \{v\}$.

We use the notation A * v to represent A' of (2.2). For any word $m = v_1 v_2 \dots v_q$ on V, we let $A * m = (((A * v_1) * v_2) * \dots) * v_q$.

- (2.3) If A and A' are any two Eulerian vectors of an isotropic system S = (L, V), then there exists a word m on V such that A' = A * m.
- (2.4) Let P = (F, A, B) be a graphic presentation of an isotropic system S = (L, V), and let $v \in V$. The graphic presentation of S induced by the Eulerian vector A * v is P * v = (F * v, A + Bv, B + An(v)) (so that A * v = A + Bv).

As a consequence of (2.3) and (2.4), the set of the fundamental graphs of a same isotropic system is a class of local equivalence. Property (2.1) says that any Eulerian vector determines precisely one fundamental graph, but conversely there may be more than one Eulerian vector associated to a same fundamental graph. The following property is a particular case of (5.4) in [4].

(2.5) For any isotropic system S, there exists an integer k such that any fundamental graph F of S is associated to precisely k Eulerian vectors of S.

We call the integer k of (2.5) the index of the isotropic system S. It is used to count the number of graphs locally equivalent to a given graph (see [5]).

3. A characterization of local equivalence

If we consider a pair (A_1, B_1) of supplementary vectors of K^V and a vector $A \in K^V$, then we easily verify that there are two uniquely defined subsets $X, Y \subseteq V$ such that $A = A_1X + B_1Y$. We call $A_1X + B_1Y$ the decomposition of A over (A_1, B_1) .

(3.1) Let (A_1, B_1) be a pair of supplementary vectors of K^V , and let $A_2, B_2 \in K^V$ be decomposed over (A_1, B_1) as

$$A_2 = A_1 X + B_1 Y,$$

 $B_2 = A_1 Z + B_1 T.$

For (A_2, B_2) to be a pair of supplementary vectors it is necessary and sufficient that

$$X \cap T + Y \cap Z = V$$
.

Proof. For any $P \subseteq V$ we let $\overline{P} = V \setminus P$. For A_2 to be complete it is necessary and sufficient that $X \cup Y = V$, which is equivalent to

(i) $\overline{Y} \subseteq X$.

Similarly B_2 is complete if and only if

(ii) $\overline{Z} \subseteq T$.

Let $C_1 = A_1 + B_1$. For any complete vector A there is a unique decomposition $A = A_1P + B_1Q + C_1R$ with $\{P,Q,R\}$ a partition of V. If we consider another complete vector A' and the decomposition $A' = A_1P' + B_1Q' + C_1R'$ with $\{P',Q',R'\}$ a partition of V, then we have $A(v) \neq A'(v)$ for every $v \in V$ if and only if $P \cap P' = Q \cap Q' = R \cap R' = \emptyset$. Let $A = A_2$ and $A' = B_2$. We have

$$A_2 = A_1[X \cap \overline{Y}] + B_1[Y \cap \overline{X}] + C_1[X \cap Y],$$

$$B_2 = A_1[Z \cap \overline{T}] + B_1[T \cap \overline{Z}] + C_1[Z \cap T].$$

and the above set of characteristic conditions for $A_2(v) \neq B_2(v), v \in V$, becomes

- (iii) $X \cap \overline{Y} \cap Z \cap \overline{T} = \emptyset$.
- (iv) $Y \cap \overline{X} \cap T \cap \overline{Z} = \emptyset$,
- (v) $X \cap Y \cap Z \cap T = \emptyset$.

Taking (i) and (ii) into account, (iii) is equivalent to

(iii') $\overline{Y} \subseteq T$,

and (iv) is equivalent to

(iv') $\overline{Z} \subseteq X$.

The set of the four inclusions (i), (ii), (iii') and (iv') is equivalent to

(v')
$$\overline{Y} \cup \overline{Z} \subseteq X \cap T$$
,

when (v) is equivalent to

(v")
$$\overline{Y} \cup \overline{Z} \supseteq X \cap T$$
.

Thus the set of the conditions (i)–(v) is equivalent to the equality $\overline{Y} \cup \overline{Z} = X \cap T$, which may be written $X \cap T + Y \cap Z = V$.

For a finite set P we let $|P|_2$ denote the residue class of $|P| \pmod{2}$.

(3.2) Let $S_1 = (L_1, V)$ and $S_2 = (L_2, V)$ be two isotropic systems on the same set V. Let (F_i, A_i, B_i) be a graphic presentation of S_i and let n_i be the neighborhood function of F_i for i = 1, 2. Let

$$A_2 = A_1 X + B_1 Y,$$

 $B_2 = A_1 Z + B_1 T.$

The isotropic systems S_1 and S_2 are equal if and only if

$$|Y \cap n_1(x_1) \cap n_2(x_2)|_2 + |T \cap n_1(x_1) \cap x_2|_2 + |X \cap n_2(x_2) \cap x_1|_2 + |Z \cap x_1 \cap x_2|_2 = 0$$
 for every x_1 and x_2 in V .

Proof. The set $E_i = \{A_i n_i(x_i) + B_i x_i : x_i \in V\}$ is a base of the vector-space L_i for i = 1, 2. L_1 and L_2 are maximally isotropic subspaces of K^V , and the bilinear form $(A, B) \to \langle A, B \rangle$ defined over K^V is nondegenerate. Thus for $L_1 = L_2$ it is necessary and sufficient that each vector of E_1 is orthogonal to each vector of E_2 , which is equivalent to

(i) $\langle A_1 n_1(x_1), A_2 n_2(x_2) \rangle + \langle A_1 n_1(x_1), B_2 x_2 \rangle + \langle B_1 x_1, A_2 n_2(x_2) \rangle + \langle B_1 x_1, B_2 x_2 \rangle = 0$ for all x_1 and $x_2 \in V$.

Let us consider in general two subsets $P, Q \subseteq V$. We have

$$\langle A_1 P, A_2 Q \rangle = \langle A_1 P, A_1 [X \cap Q] + B_1 [Y \cap Q] \rangle$$

$$= \langle A_1 P, A_1 [X \cap Q] \rangle + \langle A_1 P, B_1 [Y \cap Q] \rangle.$$

For any $R, S \subseteq V$ we verify that $\langle A_1 R, A_1 S \rangle = 0$ and $\langle A_1 R, B_1 S \rangle = |R \cap S|_2$. Thus

(ii) $\langle A_1 P, A_2 Q \rangle = |Y \cap P \cap Q|_2$,

and similarly

- (iii) $\langle A_1 P, B_2 Q \rangle = |T \cap P \cap Q|_2$,
- (iv) $\langle B_1 P, A_2 Q \rangle = |X \cap P \cap Q|_2$,
- $(\mathbf{v}) \langle B_1 P, B_2 Q \rangle = |Z \cap P \cap Q|_2.$

Using (ii)-(v), Equality (i) is equivalent to (4.2.1).

Remark. From now on the permutation (Y, T, X, Z) used in (3.1) and (3.2) will be replaced for convenience by (X, Y, Z, T).

(3.3) Let F_1 and F_2 be two simple graphs defined over the same vertex-set V, and let n_1 and n_2 be the neighborhood functions of F_1 and F_2 respectively. For F_1 and F₂ to be locally equivalent it is necessary and sufficient that we can find 4 subsets $X, Y, Z, T \subseteq V$ such that

(3.3.1)
$$|X \cap n_1(x_1) \cap n_2(x_2)|_2 + |Y \cap n_1(x_1) \cap x_2|_+ \\ |Z \cap n_2(x_2) \cap x_1|_2 + |T \cap x_1 \cap x_2|_2 = 0$$

for every $x_1, x_2 \in V$,

$$(3.3.2) X \cap T + Y \cap Z = V.$$

In addition if $F_1 = F_2$ then the number k of the solutions (X, Y, Z, T) satisfying (3.3.1) and (3.3.2) is equal to the index of any isotropic system having $F_1 = F_2$ as a fundamental graph.

Proof. Let us consider a pair (A_1, B_1) of supplementary vectors of K^V and the isotropic system S_1 defined by the graphic presentation $(F_1, A_1, B_1,)$. Suppose that F_2 is locally equivalent to F_1 . There exists a word m on V such that $F_2 = F_1 * m$. Consider the Eulerian vector $A_2 = A_1 * m$ of S_1 and the graphic presentation of S_1 which is associated to A_2 , say (F'_2, A_2, B_2) . Property (2.4) implies $F'_2 = F_2$. Thus (F_1, A_1, B_1) and (F_2, A_2, B_2) are graphic presentations of the same isotropic system S_1 . If we define $X, Y, Z, T \subseteq V$ in such a way that

- (i) $A_2 = A_1Z + B_1X$, (ii) $B_2 = A_1T + B_1Y$,

then (3.1) and (3.2) imply (3.3.1) and (3.3.2).

Conversely if there exist X, Y, Z, T satisfying (3.3.1) and (3.3.2), then we consider A_2 and B_2 defined by (i) and (ii). It follows from (3.1) that (A_2, B_2) is a pair of supplementary vectors. Thus (F_2, A_2, B_2) is a graphic presentation of some isotropic system S_2 . It follows from (3.2) that $S_2 = S_1$. Property (2.1) implies that A_2 is an Eulerian vector of S_2 . Following (2.3) there exists a word m on V such that $A_2 = A_1 * m$. Then (2.4) implies $F_2 = F_1 * m$.

4. The algorithm

Another way to express (3.3) is to write (3.3.1) and (3.3.2) as a system of equations over GF(2). We consider two simple graphs F_1 and F_2 over the same vertex-set $V = \{1, 2, \dots, n\}$. For $v, w, i \in V$ we define $\alpha_i^{vw}, \beta_i^{vw}, \gamma_i^{vw}, \delta_i^{vw} \in GF(2)$ by

$$\begin{aligned} \alpha_i^{vw} &= 1 &\iff iv \in E(F_1) \text{ and } iw \in E(F_2), \\ \beta_i^{vw} &= 1 &\iff iv \in E(F_1) \text{ and } i = w, \\ \gamma_i^{vw} &= 1 &\iff i = v \text{ and } iw \in E(F_2), \\ \delta_i^{vw} &= 1 &\iff i = v = w. \end{aligned}$$

Then F_1 is locally equivalent to F_2 if and only if we can solve the following system of equations with 4n unknowns X_i , Y_i , Z_i , T_i in GF(2), $i \in V$:

(4.1)
$$\sum_{i=1}^{i=n} (\alpha_i^{vw} X_i + \beta_i^{vw} Y_i + \gamma_i^{vw} Z_i + \delta_i^{vw} T_i) = 0$$

for every
$$v, w \in V,$$

$$(4.2) \hspace{3cm} X_i T_i + Y_i Z_i = 1$$
 for every $i \in V.$

The set of the solutions to (4.1) is a subspace \mathcal{F} of $GF(2)^{4n}$. By using a pivoting method, a base B of \mathcal{F} can be computed in $O(n^4)$ time because there are $O(n^2)$ equations in (4.1). Then we can check each vector of \mathcal{F} against Condition (4.2) to find an eventual solution. But the dimension of \mathcal{F} can be equal to O(n), so that the enumeration of \mathcal{F} is nonpolynomial in general. Fortunately we will prove the following result in Section 6:

(4.3) If the system of equations (4.1)–(4.2) has any solution and $\dim(\mathcal{S}) > 4$, then there exists an affine subspace \mathcal{A} of \mathcal{S} such that $\dim(\mathcal{S}) - \dim(\mathcal{A}) \leq 2$ and every $a \in \mathcal{A}$ is a solution to (4.1)–(4.2).

Then we use the following lemma.

(4.4) For every base B of a vector space \mathcal{S} over GF(2) and every affine subspace \mathcal{A} of \mathcal{S} such that $\dim(\mathcal{S}) - \dim \mathcal{A}) \leq q$, there exists a vector $a \in \mathcal{A}$ which is the sum of $\leq q$ vectors of B.

Proof. The set $W = \{x - y : x, y \in \mathcal{A}\}$ is a subspace of \mathcal{S} . Consider the canonical projection $p : \mathcal{S} \to \mathcal{S}/W$. The image p(B) is a generating set of \mathcal{S}/W . So we can find a base $\{p(b_1), p(b_2), \ldots, p(b_k)\}$ of \mathcal{S}/W with $b_1, b_2, \ldots, b_k \in B$. We have $k = \dim(\mathcal{S}/W) = \dim(\mathcal{S}) - \dim(\mathcal{A}) \le q$. Since $\mathcal{A} \in \mathcal{S}/W$, we can find $I \subseteq \{1, 2, \ldots, k\}$ such that $\mathcal{A} = \sum (p(b_i) : i \in I)$. This implies the existence of $a \in A$ such that $a = \sum (b_i : i \in I)$.

Thus to find an eventual solution σ to (4.1)–(4.2) we enumerate either the ≤ 16 elements of $GF(2)^{4n}$ such belong to \mathcal{F} if $\dim(\mathcal{F}) \leq 4$ or the $O(n^2)$ elements of $GF(2)^{4n}$ which are decomposable as a sum of ≤ 2 vectors of B, and for each of these elements we check in O(n) time whether Condition (4.2) is satisfied. The overall complexity does not exceed $O(n^3)$, which is lower than $O(n^4)$, the complexity for computing B.

To find a word m such that $F_2 = F_1 * m$ we adapt a technique of Fon-Der-Flaass [7]. Choose a pair (A_1, B_1) of supplementary vectors in K^V and determine the pair of supplementary vectors (A_2, B_2) by means of the solution σ and the decomposition of A_2 and B_2 over (A_1, B_1) given in (3.1). Thus we get two graphic presentations $P_1 = (F_1, A_1, B_1)$ and $P_2 = (F_2, A_2, B_2)$ of a same isotropic system S. We define the divergence from A_2 to A_1 as the function $d: V \to \{0, 1, 2\}$ satisfying the following relations for every $x \in V$:

$$d(x) = 0 \text{ if } A_2(x) = A_1(x),$$

 $d(x) = 1 \text{ if } A_2(x) = A_1(x) + B_1(x),$
 $d(x) = 2 \text{ if } A_2(x) = B_1(x).$

Notice that d(x)=1 also means $A_2*x(x)=A_1(x)$ following (2.4). Let $v\in V$ and consider the graphic presentation $P_2'=P_2*v=(F_2',A_2',B_2')$. The divergence d' from

 A_2' to A_1 can be computed by the following formulas easily derived from (2.4):

$$d'(v) = d(v)$$
 if $d(v) = 2$ otherwise $d'(v) = 1 - d(v)$, $d'(x) = d(x)$ if $d(x) = 0$ otherwise $d'(x) = 3 - d(x)$, $x \in n_2(v)$, $d'(x) = d(x)$ $x \neq v$ and $x \notin n_2(v)$.

Fon-Der-Flaass' algorithm [7] is the following one:

if there exists v such that d(v) = 1 then replace F_2 by $F_2 * v$ (and so d(v) becomes equal to 0);

if there exists an edge vw such that d(v) = d(w) = 2 then replace F_2 by $F_2 * vwv$ (and so d(v) and d(w) become equal to 0).

The algorithm stops when there is no longer any value d(v) = 1 and the subset $I = \{x : d(x) = 2\}$ is independent. Since F_2 is locally equivalent to F_1 , Fon-Der-Flaass' results imply that $I = \emptyset$ and the final graph is equal to F_1 . The algorithm is greedy, and so it takes O(n) steps. Each step requires a local complementation of complexity which is no more than $O(n^2)$. The overall complexity does not exceed $O(n^3)$.

5. The linear bijection β

Our main task is now to prove (4.3). For that we use again the compact notation defined in Section 3. We consider $\mathcal{P}(V)^4 = \{(X,Y,Z,T): X,Y,Z,T\subseteq V\}$ with its canonical structure of vector space over GF(2). The bijection between $\mathcal{P}(V)^4$ and $GF(2)^{4n}$, considered in Section 4, is the natural one. The mapping

$$((X,Y,Z,T),(X',Y',Z',T')) \to \langle (X,Y,Z,T),(X',Y',Z',T') \rangle = |X \cap X'|_2 + |Y \cap Y'|_2 + |Z \cap Z'|_2 + |T \cap T'|_2$$

is a symmetric bilinear form. For any subspace N of $\mathcal{P}(V)^4$ we let $N^{\perp} = \{\Phi : \Phi \in \mathcal{P}(V)^4, \langle \phi, \psi \rangle = 0, \psi \in N\}.$

For $x_1, x_2 \in V$, we let

$$\lambda(x_1, x_2) = (n_1(x_1) \cap n_2(x_2), n_1(x_1) \cap x_2, n_2(x_2) \cap x_1, x_1 \cap x_2)$$

and denote by $\lambda(F_1, F_2)$ the subspace of $\mathcal{P}(V)^4$ generated by $\{\lambda(x_1, x_2) : x_1, x_2 \in V\}$. Thus $\lambda(F_1, F_2)$ is the set of the solutions to (3.3.1), and it corresponds to the set \mathcal{S} considered in Section 4. We denote by $\sigma(F_1, F_2)$ the subset of the solutions to (3.3.1) and (3.3.2) (which corresponds to the set of the solutions to (4.1) and (4.2)).

For
$$\phi = (X, Y, Z, T) \in \mathcal{P}(V)^4$$
 we let

$$\begin{split} \phi^{[1]} &= (Z, T, X, Y), \\ \phi^{[2]} &= (Y, X, T, Z). \end{split}$$

For
$$\alpha=(A,B,C,D)\in \mathcal{P}(V)^4,\,i\in\{1,2\}$$
 and N a subspace of $\mathcal{P}(V)^4$ let
$$\phi\cap\alpha=(X\cap A,Y\cap B,Z\cap C,T\cap D),$$

$$\phi\underset{i}{*}\alpha=\phi+\phi^{[i]}\cap\alpha,$$

$$N\underset{i}{*}\alpha=\{\phi\ast\alpha:\phi\in N\}.$$

When α is fixed the map $\phi \to \phi *_i \alpha$ is linear, so that $N *_i \alpha$ is a subspace of $\mathcal{P}(V)^4$.

(5.1) Let $i \in \{1,2\}$ and $\alpha \in \mathcal{P}(V)^4$ be such that $\alpha \cap \alpha^{[i]} = 0$. For $\phi, \psi \in \mathcal{P}(V)^4$ and a subspace N of $\mathcal{P}(V)^4$, the following properties hold:

- (i) $\phi * \alpha * \alpha = \phi$;
- (ii) $\phi \rightarrow \phi * \alpha$ is bijective;

(iii)
$$\langle \phi * \alpha, \psi * \alpha^{[i]} \rangle = \langle \phi, \psi \rangle;$$

$$(iv) \ (N * \alpha)^{\perp} = N^{\perp} * \alpha^{[i]}.$$

Proof. To verify (i) and (iii) is easy. Then (i) implies (ii) and (iii) implies (iv).

(5.2) Let F_1 and F_2 be two simple graphs on the same vertex-set V with neighborhood functions n_1 and n_2 respectively, and let $v \in V$. Then

(i)
$$\lambda(F_1 * v, F_2) = \lambda(F_1, F_2) *(n_1(v), n_1(v), v, v);$$

(ii)
$$\lambda(F_1, F_2 * v) = \lambda(F_1, F_2) \frac{1}{2} (n_2(v), v, n_2(v), v);$$

(iii)
$$\lambda(F_1 * v, F_2)^{\perp} = \lambda(F_1, F_2)^{\perp} *(v, v, n_1(v), n_1(v));$$

(iv)
$$\lambda(F_1, F_2 * v)^{\perp} = \lambda(F_1, F_2)^{\perp} *_{\frac{1}{2}}(v, n_2(v), v, n_2(v)).$$

Proof. We just prove (i) since (ii) is similar, and (iii) and (iv) then follow from (5.1). Let $F'_1 = F_1 * v$ and let n'_1 be the neighborhood function of F'_1 . The subspace $\lambda(F'_1, F_2)$ is generated by $(\lambda'(x_1, x_2) : x_1, x_2 \in V)$ where

$$\lambda'(x_1, x_2) = (n_1'(x_1) \cap n_2(x_2), n_1'(x_1) \cap x_2, x_1 \cap n_2(x_2), x_1 \cap x_2).$$

We easily verify that

$$n_1'(x_1) = n_1(x_1) + e_{x_1v}n_1(v) + n_1(v) \cap x_1$$

for every $x_1 \in V$, $e_{x_1v} = 1$ if x_1v is an edge of F_1 and $e_{x_1v} = 0$ otherwise. Thus

$$\lambda'(x_1,x_2) = \lambda(x_1,x_2) + e_{x_1v}(n_1(v) \cap n_2(x_2), n_1(v) \cap x_2, 0, 0) + (x_1 \cap n_1(v) \cap n_2(x_2), x_1 \cap n_1(v) \cap x_2, 0, 0).$$

Another generating family of $\lambda(F_1',F_2)$ is $(\lambda''(x_1,x_2)=\lambda'(x_1,x_2)+e_{x_1v}\lambda'(v,x_2):x_1,x_2\in V)$. We have

$$\begin{split} \lambda''(x_1,x_2) &= \lambda(x_1,x_2) + e_{x_1v}(0,0,v \cap n_2(x_2),v \cap x_2) + \\ &\quad + (x_1 \cap n_1(v) \cap n_2(x_2),x_1 \cap n_1(v) \cap x_2,0,0) \\ &= \lambda(x_1,x_2) + (0,0,v \cap n_1(x_1) \cap n_2(x_2),v \cap n_1(x_1) \cap x_2) \\ &\quad + (x_1 \cap n_1(v) \cap n_2(x_2),x_1 \cap n_1(v) \cap x_2,0,0) \\ &= \lambda(x_1,x_2) \mathop{}_{1}^{\star}(n_1(v),n_1(v),v,v), \end{split}$$

which proves the property since $(\lambda(x_1, x_2) : x_1, x_2 \in V)$ is a generating family of $\lambda(F_1, F_2)$.

Definition. Let (F_1, F_2) and (F'_1, F'_2) be two pairs of simple graphs defined over a same vertex-set V, and suppose that $F'_1 = F_1 * m_1$ and $F'_2 = F_2 * m_2$, where m_1 and m_2 are words with letters in V. We define a linear bijection $\beta = \beta(F_1, F'_1, F_2, F'_2)$ from $\mathcal{P}(V)^4$ into $\mathcal{P}(V)^4$ as follows:

(i) if $m_1 = v, v \in V$, and m_2 is the empty word, then

$$\beta:\phi\to\phi*_1(v,v,n_1(v),n_1(v));$$

(ii) if $m_2 = v, v \in V$, and m_1 is the empty word, then

$$\beta: \phi \to \phi *(v, n_2(v), v, n_2(v));$$

(iii) in the other cases β is defined by composition from Cases (i) and (ii). Then (5.2) implies

(5.3)
$$\lambda(F_1', F_2')^{\perp} = \beta(\lambda(F_1, F_2)^{\perp}).$$

(5.4) With the above notation let (X', Y', Z', T') be the image of some $(X, Y, Z, T) \in \mathcal{P}(V)^4$ by the linear bijection $\beta(F_1, F_1', F_2, F_2')$. Then

$$X' \cap T' + Y' \cap Z' = X \cap T + Y \cap Z.$$

Proof. Let $F_2' = F_2$ and $F_1' = F_1 * v, v \in V$. We have

 $(X',Y',Z',T')=(X,Y,Z,T)+(Z,T,X,Y)\cap (v,v,n_1(v),n_1(v)),$

which implies

$$X' \cap T' = (X + Z \cap v) \cap (T + Y \cap n_1(v))$$

$$= (X \cap T + X \cap Y \cap n_1(v) + Z \cap T \cap v,$$

$$Y' \cap Z' = (Y + T \cap v) \cap (Z + X \cap n_1(v))$$

$$= Y \cap Z + X \cap Y \cap n_1(v) + Z \cap T \cap v,$$

which in turn implies the equality of the statement. The verification is similar for $F_1 = F_1'$ and $F_2 = F_2' * v$. It is obtained by composition for general $\beta(F_1, F_1', F_2, F_2')$.

Following Condition (3.3.2), an element $(X,Y,Z,T) \in \lambda(F_1,F_2)^{\perp}$ also belongs to $\sigma(F_1,F_2)$ if and only if $X \cap T + Y \cap Z = V$. Therefore the preceding property implies

(5.5)
$$\sigma(F_1', F_2') = \beta(\sigma(F_1, F_2)).$$

6. Internal solutions (Bineighbourhood Space)

We now consider a simple graph F over the vertex-set V and we are interested in $\sigma(F,F)$, the set of the internal solutions w.r.t. F. We suppose that F is connected, which is not a restriction because local complementations preserve connected components. To simplify the notation we let $\Lambda(F) = \lambda(F,F)^{\perp}$. Where n is the neighborhood function of F, we let $\nu(xy) = n(x) \cap n(y)$ for every nonordered pair of distinct vertices x and y. We denote by \overline{F} the complementary of the simple graph F. Any $P \in \mathcal{P}(V)$ will be identified to its characteristic function with values in GF(2), so that for every $x \in P$ we have P(x) = 1 if $x \in P$, P(x) = 0 otherwise. For $P, Q \in \mathcal{P}(V)$ we let $\langle P, Q \rangle = |P \cap Q|_2$, and for any subspace N of $\mathcal{P}(V)$ we let $N^{\perp} = \{P \in \mathcal{P}(V) : \langle P, Q \rangle = 0$ for every $Q \in N\}$. Following (3.3.1) an element (X,Y,Z,T) of $\mathcal{P}(V)^4$ belongs to $\Lambda(F)$ if and only if it satisfies the following conditions

(6.1)
$$\langle X, \nu(xy) \rangle = Z(x) + Y(y)$$
, xy is an edge of F;

(6.2)
$$\langle X, \nu(xy) \rangle = 0$$
, xy is an edge of \overline{F} ;

(6.3)
$$\langle X, n(x) \rangle = T(x), \quad x \text{ is a vertex of } F.$$

We easily verify that (6.3) is equivalent to

$$(6.3)' T = n(X).$$

(6.4) Every element $(X, Y, Z, T) \in \Lambda(F)$ either satisfies Z = Y or $Z = \overline{Y}$.

Proof. Following (6.1) we have $\langle X, \nu(xy) \rangle = Z(x) + Y(y)$ and $\langle X, \nu(yx) \rangle = Z(y) + Y(x)$ for every edge xy, which implies Z(y) - Y(y) = Z(x) - Y(x). Since F is connected Z(x) - Y(x) will be equal to a constant k. If k = 0 we have Z = Y, otherwise $Z = \overline{Y}$.

We let

$$\Lambda_0(F) = \{ (X, Y, Z, T) \in \Lambda(F) : Z = Y \},$$

$$\Lambda_1(F) = \{ (X, Y, Z, T) \in \Lambda(F) : Z = \overline{Y} \}.$$

We notice that $\Lambda_0(F)$ is a sunspace of $\Lambda(F)$. The preceding property is equivalent to

$$(6.4)' \Lambda(F) = \Lambda_0(F) \cup \Lambda_1(F).$$

For any cycle C of F we let $\nu(C) = \sum (\nu(xy) : xy \in C)$ and we denote by $\nu(F)$ the subspace of $\mathcal{P}(V)$ generated by $\{\nu(C) : C \text{ is a cycle of } F\} \cup \{\nu(xy) : xy \text{ is an edge of } \overline{F}\}$. We call $\nu(F)$ the bineighbourhood space of F, and we study this space with some detail in [5].

Lemma (6.5) Let F be a simple graph over the vertex-set V. A subset $X \subseteq V$ belongs to $\nu(F)^{\perp}$ if and only if there exists $(X,Y,Z,T) \in \Lambda_0(F)$ with this given X. Moreover $(X,Y,Z,T) \in \Lambda_0(F)$ implies $(X,\overline{Y},\overline{Y},T) \in \Lambda_0(F)$, and there is no other element of $\Lambda_0(F)$ with this given X.

Proof. Let us consider some $(X, Y, Y, T) \in \Lambda_0(F)$. For (6.1) to be satisfied it is necessary that

(a) $\sum (\langle X, \nu(xy) \rangle : xy \in C) = 0$, C is a cycle of F,

which also may be written $\langle X, \nu(C) \rangle = 0$. Thus for (6.1) and (6.2) to be satisfied, it is necessary that $X \in \nu(F)^{\perp}$. Conversely let $X \in \nu(F)^{\perp}$ and choose any value $Y(v_0)$ at some vertex v_0 of F. It follows from (a) that we can consistently define a subset $Y \subseteq V$ by letting $Y(v) = Y(v_0) + \sum (\langle X, \nu(xy) \rangle : xy \in P)$ for each vertex v and P any path from v_0 to v. Then Z = Y satisfies (6.1). Equality (6.2) is satisfied because $X \in \nu(F)^{\perp}$, and (6.3)' will hold by choosing the appropriate T. Therefore we can actually construct $(X, Y, Y, T) \in \Lambda_0(F)$ with the given X. Finally we notice that Y is uniquely determined when the value $Y(v_0)$ is chosen, and the two possible solutions corresponding to the two possible values of $Y(v_0)$ are complementary subsets.

For every $X \in \mathcal{P}(V)$ let

$$\begin{split} & \Lambda(X,F) = (X,X \cap n(X),X \cap n(X),n(X)), \\ & \overline{\Lambda}(X,F) = (X,\overline{X \cap n(X)},\overline{X \cap n(X)},n(X)), \end{split}$$

(6.6) For any simple graph F and any $X \in \nu(F)^{\perp}$, $\Lambda(X,F)$ belongs to $\Lambda_0(F)$.

Proof. $\Lambda(X, F)$ obviously satisfies (6.3)'. Since $X \in \nu(F)^{\perp}$, it also satisfies (6.2). Thus it remains to prove that (6.1) is satisfied for $Z = Y = X \cap n(X)$ when $X \in \nu(F)^{\perp}$. The proof proceeds through three steps.

Claim (6.6.1) If X is an independent subset of F, then $\Lambda(X, F) \in \Lambda_0(F)$.

Proof. In this case we have $Z = Y = \emptyset$, so that (6.1) will hold if we prove (b) $\langle X, \nu(xy) \rangle = 0$, xy is an edge of F.

Case 1. Either $x \in X$ or $y \in X$. Equality (b) holds because no $z \in X$ is joined to both x and y.

Case 2. $x \notin X$ and $y \notin X$. If no $z \in X$ is joined to both x and y, then (b) obviously holds; otherwise choose such a z and consider the cycle C = (x, y, z). We have $\langle X, \nu(C) \rangle = 0$ because $X \in \nu(F)^{\perp}$. Therefore

$$\langle X, \nu(xz) \rangle + \langle X, \nu(zy) \rangle + \langle X, \nu(xy) \rangle = 0.$$

It follows from Case 1 that the two first terms vanish in the above sum, so that the third one also vanishes.

Claim (6.6.2) Let F' = F * v for some vertex v, and let $\beta = \beta(F, F', F, F')$. We have

$$\beta(\Lambda(X,F)) = \Lambda(X + n(X) \cap v, F').$$

Proof. It is essentially a computation. We first transform $\psi_0 = \Lambda(X, F)$ by $\beta(F, F', F, F)$, and we transform the image ψ_1 by $\beta(F', F', F, F')$ to obtain $\psi_2 = \beta(\Lambda(X, F))$. To simplify the notation we let $Y = X \cap n(X)$ and T = n(X). We have

$$\psi_1 = \psi_0 + \psi_0^{[1]} \cap (v, v, n(v), n(v))$$

= $(X, Y, Y, T) + (Y, T, X, Y) \cap (v, v, n(v), n(v)).$

To compute ψ_2 from ψ_1 we have to use the neighborhood function n' of F' but we notice that n'(v) = n(v). We also use the property $n(v) \cap v = \emptyset$.

$$\begin{split} \psi_2 &= \psi_1 + \psi_1^{[2]} \cap (v, n(v), v, n(v)) \\ &= (X, Y, Y, T) + (Y, T, X, Y) \cap (v, v, n(v), n(v)) + \\ &\quad (Y, X, T, Y) \cap (v, n(v), v, n(v)) + \\ &\quad (T, Y, Y, X) \cap (v, v, n(v), n(v)) \cap (v, n(v), v, n(v)) \\ &= (X + T \cap v, Y + T \cap v + X \cap n(v), \\ &\quad Y + T \cap v + X \cap n(v), T + X \cap n(v)). \end{split}$$

The neighborhood function n' is related with n by

$$n'(x) = n(x) + \langle x, n(v) \rangle n(v) + x \cap n(v), \quad x \in V,$$

so that

$$n'(X') = n(X') + \langle X', n(v) \rangle n(v) + X' \cap n(v), \quad X' \subseteq V.$$

Applying the preceding formula to $X' = X + T \cap v$, the reader will verify that $\Lambda(X', F') = \psi_2$.

We verify that the linear mapping $X \to X + n(X) \cap v$ is bijective. Thus the preceding property implies that $\beta = \beta(F, F', F, F')$ maps $\Lambda_0(F)$ onto $\Lambda_0(F')$ when F' = F * v. This also holds for any F' locally equivalent to F by composition.

Claim (6.6.3) Let F be a simple graph over the vertex-set V. For every $X \subseteq V$ there exists F' locally equivalent to F such that if we let $\beta = \beta(F, F', F, F')$ and we define X' by $\Lambda(X', F') = \beta(\Lambda(X, F))$, then X' is an independent subset of F'.

Proof. To prove the property we may replace the pair (X, F) by any pair (X', F') with F' locally equivalent to F and $\Lambda(X', F') = \beta(\Lambda(X, F))$. We choose (X, F) so that |X| is minimal. Then we show that X is independent in F, which will prove the claim with X' = X and F' = F.

There cannot exist a vertex v of odd degree in the induced subgraph F[X]. On the contrary we should have $v \in n(X)$. Taking F' = F * v, it follows from (6.6.2) that $X' = X + n(X) \cap v = X \setminus v$, so that |X'| < |X|, a contradiction with the choice of X.

Thus every vertex of F[X] has even degree, so that $n(X) \cap X = \emptyset$. Suppose that some edge vw does exist in F[X], and replace F by F' = F * v. We have $X' = X + n(X) \cap v = X$ because $n(X) \cap X = \emptyset$. But after locally complementing F at v, the vertex w of even degree in F[X] becomes of odd degree in F'[X'], so that we can repeat the above argument with (X', F') replacing (X, F), again a contradiction with the minimality of |X| = |X'|.

To prove the proposition we apply (6.6.3) to find F' locally equivalent to F and X' independent in F' such that $\Lambda(X',F')=\beta(\Lambda(X,F))$ with $\beta=\beta(F,F',F,F')$. It follows from (6.6.1) that $\Lambda(X',F')\in\Lambda_0(F')$. But $\beta^{-1}=\beta(F',F,F',F)$ maps $\Lambda_0(F')$ onto $\Lambda_0(F)$, so that $\Lambda(X,F)\in\Lambda_0(F)$.

It follows from (6.5) and (6.6) that

(6.7)
$$\Lambda_0(F) = \{\Lambda(X,F) : X \in \nu(F)^{\perp}\} \cup \{\overline{\Lambda}(X,F) : X \in \nu(F)^{\perp}\}.$$

We notice that $\Lambda(X,F)$ does not satisfy Condition (3.3.2) when $\overline{\Lambda}(X,F)$ does. We call $\overline{\Lambda}(X,F)$, $X \in \nu(F)^{\perp}$, a regular solution to (3.3.1)–(3.3.2).

(6.8) If $\dim(\nu(F)^{\perp}) > 2$, the set of the regular solutions which belong to $\Lambda_0(F)$ is an affine subspace of codimension 1 (hyperplane) in $\Lambda_0(F)$.

To prove (6.8) we use the following lemma of D. F. Fon-Der-Flaass [8].

Lemma (6.8.1) Let $\psi(X'X'') = X' \cap n(X'') + X'' \cap n(X')$ be defined for X', $X'' \in \nu(F)^{\perp}$, and suppose that $\psi(X', X'') \in \{\emptyset, V\}$ always holds. Then either $\dim(\nu(F)^{\perp}) = 2$ or $\psi(X', X'') = 0$ always holds.

Proof. Consider any pair of vectors $X', X'' \in \nu(F)^{\perp}$ such that $\psi(X', X'') = V$.

We claim that any $Y \in \nu(F)^{\perp}$ satisfying $\psi(X',Y) = \emptyset$ is such that $Y \subseteq X'$. Since ψ is bilinear we have $\psi(X',X''+Y)=V$. We notice that whenever two elements $Z, T \in \nu(F)^{\perp}$ satisfy $\psi(Z,T)=V$, they also satisfy $Y \cup Z=V$. Thus $X' \cup X'' = X' \cup (X''+Y)=V$, which implies $Y \subseteq X'$.

Let us consider X = X' + X'' and any $Y \in \nu(F)^{\perp}$. Since ψ is bilinear, either the three values $\psi(X,Y), \ \psi(X',Y), \ \psi(X'',Y)$ are null or two are equal to V when the third one is null. We notice that $\psi(X,X') = \psi(X',X') + \psi(X'',X') = V$. Therefore in the first case we have $Y \subseteq X' \cap X'' \cap X = \emptyset$. Thus if $Y \neq \emptyset$, the second case must occur. We may suppose w.l.o.g. that $\psi(X,Y) = \emptyset$ when $\psi(X',Y) = \psi(X'',Y) = V$. Then we have $Y \subseteq X$ because $\psi(X,X') = V$ and $X \subseteq Y$ because $\psi(Y,X') = V$, so that Y = X. It follows that $\nu(F)^{\perp}$ is generated by X' and X'', which proves the lemma.

Proof of (6.8). Since $\Lambda_0(F)$ is a vector space, Equality (6.7) implies that for X', $X'' \in \nu(F)^{\perp}$ we have either

(i)
$$\Lambda(X'F) + \Lambda(X'',F) = \Lambda(X' + X'',F)$$

or

(ii)
$$\Lambda(X'F) + \Lambda(X'', F) = \overline{\Lambda}(X' + X'', F)$$
.

Let us consider the mapping ψ defined in the lemma. We verify that Case (i) occurs if $\psi(X',X'')=0$ when Case (ii) occurs if $\psi(X',X'')=V$. Following the lemma, only Case (i) does occur since we suppose $\dim(\nu(F)^{\perp})>2$. Therefore the set $A=\{\Lambda(X,F):X\in\nu(F)^{\perp}\}$ is a subspace of codimension 1 of $\Lambda_0(F)$. The set $\overline{A}=\{\overline{A}(X,F):X\in\nu(F)^{\perp}\}$ is an hyperplane parallel to A, and each element in \overline{A} is a regular solution.

(6.9) Let F_1 and F_2 be two simple graphs over the same vertex-set V. If $\sigma(F_1, F_2)$ is nonempty and $\dim(\lambda(F_1, F_2)^{\perp}) > 4$, then $\sigma(F_1, F_2)$ includes an affine subspace of codimension ≤ 2 in $\lambda(F_1, F_2)^{\perp}$.

Proof. If $\sigma(F_1, F_2)$ is nonempty then F_1 and F_2 are locally equivalent, so that we can consider some F locally equivalent to F_1 and F_2 . Let ϱ be the set of the regular solutions which belong to $\Lambda_0(F)$. We have $\varrho \subseteq \sigma(F, F)$. We have $\dim(\Lambda(F)) = \dim(\lambda(F, F)^{\perp}) = \dim(\lambda(F_1, F_2)^{\perp}) > 4$, which implies $\dim(\nu(F)^{\perp}) > 2$ because (6.7) holds and $\Lambda_0(F)$ is a subspace of codimension ≤ 1 in $\Lambda(F)$. Following

(6.8) ϱ is an hyperplane in $\Lambda_0(F)$. Since $\Lambda_0(F)$ is a subspace of codimension ≤ 1 in $\Lambda(F) = \lambda(F, F)^{\perp}$, ϱ is an affine subspace of codimension ≤ 2 in $\lambda(F, F)^{\perp}$. The linear bijection $\beta(F, F_1, F, F_2)$ maps ϱ into an affine subspace of codimension ≤ 2 in $\lambda(F_1, F_2)^{\perp}$.

Proof of (4.3). It is a rephrasing of (6.9) where $\lambda(F_1, F_2)^{\perp}$ stands for \mathcal{F} and $\sigma(F_1, F_2)$ stands for the set of the solutions to (4.1)-(4.2).

7. Singular solutions

We still use the notation of Section 6. We call an element of $\sigma(F,F) \cap \Lambda_1(F)$ a singular solution.

- (7.1) The subset $\Lambda_1(F)$ is nonempty if and only if there exists $X \subseteq V$ such that:
 - (i) $\langle X, \nu(C) \rangle = |C|_2$ for every cycle C of F,
 - (ii) $\langle X, \nu(xy) \rangle = 0$ for every edge xy of \overline{F} .

Proof. For $(X, Y, Z, T) \in \Lambda_1(F)$, (6.1) becomes $\langle X, \nu(xy) \rangle = Y(x) + Y(y) + 1$, xy is an edge of F. Then we prove as in (6.5) that (i) must hold. The converse also is proved similarly.

- (7.2) There exist singular solutions if and only if F satisfies the following conditions:
 - (i) every vertex of F has an odd degree;
 - (ii) $|\nu(xy)|_2 = 0$, xy is an edge of \overline{F} ;
 - (iii) $|\nu(C)|_2 = |C|_2$, C is a cycle of F.

Then there exist precisely two singular solutions (V,Y,\overline{Y},V) and (V,\overline{Y},Y,V) with Y satisfying

$$|\nu(xy)|_2 + 1 = Y(x) + Y(y).$$

Proof. For (X, Y, Z, T) to satisfy (3.3.2) when $Z = \overline{Y}$, we must have X = T = V, which implies n(X) = V by (6.3). This equality amounts to say that F has odd degrees. The other conditions are those of (7.1) with X = V. The remaining of the statement is proved like (6.5).

The class of the graphs satisfying the conditions of the preceding statement is called Class α . It has been verified directly by L. Allys [1] that Class α is invariant by local complementation. We notice that Condition (iii) of the preceding statement always holds for a bipartite graph. For example if we consider the complete bipartite graph $K_{2m,2m}$, and we delete a perfect matching, then we easily verify that the resulting bipartite graph is in Class α . Let us now characterize the bipartite graphs in Class α .

A binary matroid is a pair M=(N,V) with a finite set V and a subspace N of $\mathcal{P}(V)$. The dual of M is $M^*=(N^\perp,V)$, and we say that M is autodual if $M=M^*$ (or equivalently $N=N^\perp$). A base of M is a subset $X\subseteq V$ such that $n\in N$ and $n\subseteq X$ imply $n=\emptyset$. For any $y\in Y=V\setminus X$ there exists precisely one nonnull $n_y\in N$ such that $n_y\subseteq X\cup\{y\}$. The bipartite graph F, defined on V, whose edges are the pairs $xy,\ x\in X,\ y\in Y,\ x\in n_y$, is called a fundamental graph of M. We notice that F is also a fundamental graph of M^* .

(7.3) A bipartite graph F is in Class α if and only if it is a fundamental graph of an autodual binary matroid.

Proof. Let F be defined on the color classes X and Y. For $y \in Y$ let $n_y = \{y\} \cup \{x : xy \text{ is an edge of } F\}$. If N is the subspace of $\mathcal{P}(V)$ generated by $(n_y : y \in Y)$, then we verify that X is a base of the binary matroid M = (N, V), so that F is a fundamental graph of M. Condition (i) of (7.2) amounts to $\langle n_y, n_y \rangle = 0$ for every $y \in Y$, and Condition (ii) amounts to $\langle n_y, n_z \rangle = 0$ for every $y, z \in Y$. Therefore any two vectors in $(n_y : y \in Y)$ are orthogonal, and since this family is a base of N (in the sense of linear algebra) this implies $N \subseteq N^{\perp}$. Exchanging the roles of X and T, we also obtain $N^{\perp} \subseteq N$. Therefore $N = N^{\perp}$ if F is in Class α . The converse is proved similarly.

Class α also contains graphs which are not locally equivalent to bipartite graphs, for example the 5-wheel.

Acknowledgements. D. G. Fon-Der-Flaass found a flaw in the original proof of (6.8) and mended it by means of Lemma (6.8.1).

References

- [1] L. Ally: personal communication, May 1988.
- [2] A. BOUCHET: Isotropic systems, European J. of Combinatorics, 8 (1987) 231-244.
- [3] A. BOUCHET: Graphic presentations of isotropic sysmtes, J. Comb. Theory Series B, 45 (1988) 58-76.
- [4] A. BOUCHET: Digraph decompositions and Eulerian systems, SIAM J. Alg. Discrete Math., 8 (1987) 323-337.
- [5] A. BOUCHET: Recognizing locally equivalent graphs, to appear in Discrete Math.
- [6] A. KOTZIG: Qualques remarques sur les transformations x, séminaire Paris, 1977.
- [7] D. G. FON-DER-FLAASS: On local complementations of graphs, in: Proc. 7th Hungarian Colloquium of Combinatorics, July 1987, Colloquia Mathematica Societatis János Bolyai, pp. 257-266.
- [8] D. G. FON-DER-FLAASS: letter March 20, 1989.

André Bouchet

Université du Maine 72017 Le Mans Cedex France